图形工作站、集群应用方案
  • 网站首页
  • 商城
  • 产品
  • 行业计算
  • 科学工程计算
  • 化学&生物
  • 图形设计
  • 图像处理
  • 视景仿真
  • 人工智能
  • 影视后期
全球领先的高端图形工作站供应商

免费测试 热线 : 400-7056-800 【 为任何应用提供 最快计算设备 如不符,退货】【最新报价】【选购指南】【京东商城】



企业通用模版网站

  • 科研团队全能超算平台25v1
  • 超高分拼接 数字孪生
  • 科学计算MatLAB工作站24
  • 地质建模 油藏模拟工作站
  • 工业CT扫描 机器视觉计算
  • 电力系统关键应用配置24
  • 网站首页
  • 商城
  • 产品
  • 行业计算
  • 科学工程计算
  • 化学&生物
  • 图形设计
  • 图像处理
  • 视景仿真
  • 人工智能
  • 影视后期
  • 送无人机啦 8核6.4GHz  96核4.8GHz 加速改装 

  • 高性能集群 虚拟并行计算 芯片设计 光学仿真 

  • 蛋白质预测 生物信息 冷冻电镜 材料模拟

  • RSS订阅
  • 理科计算推荐
  • 仿真计算最快最完美25v1
  • 电磁仿真单机与集群25v1
  • 航拍实景建模单机集群
  • 遥感图像处理工作站集群
  • 4K/8K剪辑特效调色24v1
  • AI大模型工作站集群25v1
  • Abaqus硬件配置大全24v3
  • CST电磁仿真工作站25v1
  • 多物理场仿真单机与集群
  • 流体/空气动力学仿真25v1
  • 量子化学 分子动力模拟
  • 三维设计24v2  3D打印

 

您的位置:UltraLAB图形工作站方案网站 > 人工智能 > 深度学习 > NvidiaAI发布llama-3.1-nemotron-51B:一种新的LLM,可在推理期间在单个GPU上运行 4倍的工作负载

NvidiaAI发布llama-3.1-nemotron-51B:一种新的LLM,可在推理期间在单个GPU上运行 4倍的工作负载

时间:2024-09-26 03:46:41   来源:UltraLAB图形工作站方案网站   人气:12865 作者:管理员
Nvidia 推出了其最新的大型语言模型 (LLM) 产品 Llama-3.1-Nemotron-51B。该模型基于 Meta 的 Llama-3.1-70B,使用先进的神经架构搜索 (NAS) 技术进行了微调,在性能和效率方面都取得了突破。该模型专为单个 Nvidia H100 GPU 而设计,可显著降低内存消耗、计算复杂性和与运行此类大型模型相关的成本。它标志着 Nvidia 不断努力为实际应用优化大规模 AI 模型的一个重要里程碑。

Llama-3.1-Nemotron-51B 的起源

Llama-3.1-Nemotron-51B 是 Meta 的 Llama-3.1-70B 的衍生产品,于 2024 年 7 月发布。虽然 Meta 的模型已经在性能方面树立了高标准,但 Nvidia 试图通过专注于效率来进一步突破极限。通过使用 NAS,Nvidia 的研究人员创建了一个模型,该模型可提供相似(如果不是更好的)性能,并显著降低资源需求。在原始计算能力方面,Llama-3.1-Nemotron-51B 的推理速度比其前身快 2.2 倍,同时保持相当的准确性水平。


效率和性能的突破

LLM 开发中的关键挑战之一是平衡准确性和计算效率。许多大型模型提供了最先进的结果,但以消耗大量硬件和能源资源为代价,这限制了它们的适用性。Nvidia 的新模型在这两个竞争因素之间取得了微妙的平衡。

Llama-3.1-Nemotron-51B 实现了令人印象深刻的精度-效率权衡,降低了内存带宽,降低了每秒浮点运算数 (FLOP) 并减少了整体内存占用,而不会影响模型执行推理、总结和语言生成等复杂任务的能力。Nvidia 已将模型压缩到可以在单个 H100 GPU 上运行比以往更大的工作负载的程度,从而为开发人员和企业开辟了许多新的可能性。


改进的工作负载管理和成本效率

Llama-3.1-Nemotron-51B 的一个突出特点是它能够在单个 GPU 上管理更大的工作负载。此模型允许开发人员在更具成本效益的环境中部署高性能 LLM,从而在一个 H100 单元上运行以前需要多个 GPU 的任务。

例如,该模型在推理过程中可以处理的工作负载是参考 Llama-3.1-70B 的 4 倍。它还允许更快的吞吐量,Nvidia 报告称在关键领域的性能比其他模型高 1.44 倍。Llama-3.1-Nemotron-51B 的效率源于一种创新的架构方法,该方法侧重于减少计算过程中的冗余,同时仍保留模型以高精度执行复杂语言任务的能力。

架构优化:成功的关键

Llama-3.1-Nemotron-51B 的成功在很大程度上归功于一种新颖的架构优化方法。传统上,LLM 是使用相同的块构建的,这些块在整个模型中重复出现。虽然这简化了构建过程,但也带来了效率低下,尤其是在内存和计算成本方面。


Nvidia 通过采用优化推理模型的 NAS 技术来解决这些问题。该团队使用了块蒸馏过程,其中训练更小、更高效的学生模型来模拟大型教师模型的功能。通过改进这些学生模型并评估它们的性能,Nvidia 生产了一个版本的 Llama-3.1,该版本提供了类似水平的准确性,同时大大降低了资源需求。

块蒸馏过程允许 Nvidia 在模型中探索注意力和前馈网络 (FFN) 的不同组合,根据任务的具体要求创建优先考虑速度或准确性的替代配置。这种灵活性使 Llama-3.1-Nemotron-51B 成为需要大规模部署 AI 的各个行业的强大工具,无论是在云环境、数据中心,甚至是边缘计算设置中。

拼图算法和知识蒸馏

Puzzle 算法是使 Llama-3.1-Nemotron-51B 有别于其他模型的另一个关键组成部分。该算法对模型中的每个潜在块进行评分,并确定哪些配置将在速度和准确性之间产生最佳权衡。通过使用知识蒸馏技术,Nvidia 缩小了参考模型 (Llama-3.1-70B) 和 Nemotron-51B 之间的精度差距,同时显著降低了训练成本。

通过这个过程, Nvidia 创建了一个在 AI 模型开发的高效前沿运行的模型,突破了使用单个 GPU 可以实现的界限。通过确保模型中的每个块都尽可能高效,Nvidia 创建了一个在准确性和吞吐量方面优于许多同行的模型。


NVIDIA 致力于提供经济高效的 AI 解决方案

成本一直是广泛采用大型语言模型的重大障碍。虽然这些模型的性能是不可否认的,但它们的推理成本限制了它们的使用,仅限于资源最丰富的组织。Nvidia 的 Llama-3.1-Nemotron-51B 正面解决了这一挑战,提供了一种性能高且旨在提高成本效益的模型。

该模型的内存和计算要求降低,使得可能没有资源运行大型模型的小型组织和开发人员更容易使用。Nvidia 还简化了部署过程,将模型打包为其 Nvidia 推理微服务 (NIM) 的一部分,该服务使用 TensorRT-LLM 引擎进行高吞吐量推理。该系统旨在在各种设置(从云环境到边缘设备)中轻松部署,并且可以根据需求进行扩展。

未来的应用和影响

Llama-3.1-Nemotron-51B 的发布对生成式 AI 和 LLM 的未来具有深远的影响。通过使高性能模型更易于访问且更具成本效益,Nvidia 为更广泛的行业利用这些技术打开了大门。推理成本的降低还意味着 LLM 现在可以部署在以前成本太高而无法证明的领域,例如实时应用程序、客户服务聊天机器人等。

模型开发中使用的 NAS 方法的灵活性意味着 Nvidia 可以继续针对不同的硬件设置和用例改进和优化架构。无论开发人员需要针对速度还是准确性进行优化的模型,Nvidia 的 Llama-3.1-Nemotron-51B 都能提供满足各种要求的基础。


最新最全AI训练与推理、大模型、生成式AI应用工作站/机架式/便携式服务器配置推荐2024v3

https://www.xasun.com/news/html/?2890.html


结论

Nvidia 的 Llama-3.1-Nemotron-51B 是 AI 领域改变游戏规则的版本。通过专注于性能和效率,Nvidia 创造了一种模式,不仅可与业内最好的模型相媲美,而且在成本效益和可访问性方面也树立了新标准。使用 NAS 和块蒸馏技术使 Nvidia 能够突破 LLM 的传统限制,从而可以在保持高精度的同时在单个 GPU 上部署这些模型。随着生成式 AI 的不断发展,像 Llama-3.1-Nemotron-51B 这样的模型将在塑造行业的未来方面发挥关键作用,使更多组织能够在日常运营中利用 AI 的力量。无论是用于大规模数据处理、实时语言生成还是高级推理任务,Nvidia 的最新产品都有望成为开发人员和企业的宝贵工具

关闭此页
上一篇:Llama 3.2 工作站/服务器硬件配置指南
下一篇:全面开放:NVIDIA加速Meta Llama 3的推理

相关文章

  • 05/13体系化仿真计算设备系统组成分析及工作站/服务器/存储配置推荐
  • 05/12AMD 第 6 代 EPYC Venice:发现 CCD 配置和线程性能
  • 05/12UltraLAB定制图形工作站产品介绍2025v2
  • 05/09Xeon6代+4块GPU--图灵超算工作站GT450M介绍
  • 05/09汽车风阻测试模拟分析、算法,及服务器/工作站计算设备硬件配置推荐
  • 04/26高频交易(HFT)应用分析、算法,服务器/工作站硬件配置推荐
  • 04/25衍生品定价与风险对冲应用分析、算法,及服务器工作站硬件配置
  • 04/25量化交易策略应用算法分析、服务器工作站硬件配置
  • 04/24金融风险管理应用算法分析、服务器/工作站硬件配置推荐
  • 04/19油藏模拟软件的算法分析以及图形工作站/服务器硬件配置推荐25v2

工程技术(工科)专业工作站/服务器硬件配置选型

    左侧广告图2

新闻排行榜

  • 1如何在本地运行 Llama 3 8B 和 Llama 3 70B及硬件配置推荐
  • 2NVIDIA GeForce GTX 280测试报告
  • 3比GTX280快10倍-Quadro VX200专业卡评测
  • 4深度学习训练与推理计算平台硬件配置完美选型2020v1
  • 5高性能仿真计算集群(结构、流体、多物理场耦合)配置推荐2024v1
  • 62019年最快最全深度学习训练硬件配置推荐
  • 7Llama-2 LLM的所有版本和硬件配置要求
  • 8支持7块RTX3090静音级深度学习工作站硬件配置方案2021v2
  • 9HFSS电磁仿真应用与工作站配置方案
  • 10解锁最大推理能力:深入研究80GB A100 GPU 上的Llama2–70B

最新信息

  • 性能直逼6710亿参数DeepSeek R1--- QwQ-32B推理模型本地硬件部署
  • 史上最神的AI静音工作站---算命、炒股、看病、程序设计、销售策划、仿真计算、3D设计、药物设计、基因测序、大数据分析
  • 用中文训练更快-满血版Deepseek R1本地部署服务器/工作站硬件配置精准分析与推荐
  • DeepSeek R1训练和推理一体式服务器/工作站硬件配置、部署具体步骤
  • DeepSeek V3推理和训练一体式服务器/工作站硬件配置、部署具体步骤
  • DeepSeek R1/V3应用-服务器/工作站/集群配置推荐
  • 生成式AI热门应用、算法及对计算机硬件配置要求
  • llama3.2本地系统+软件安装运行、主要应用、计算硬件要求、最新GPU服务器配置参考

应用导航:

工作站产品中心 京东商城 中关村商城 淘宝商城 超高分可视化商城 便携工作站商城 ANSYS CATIA Microsoft INTEL NVIDIA 网站统计

公司简介-业务咨询-招聘英才-资料下载-UM-

本网站所有原创文字和图片内容归西安坤隆计算机科技有限公司版权所有,未经许可不得转载
陕ICP备16019335号 陕公网安备61010302001314号
Copyright © 2008-2023 , All Rights Reserved

首页
热线
商城
分类
联系
顶部