Nvidia Tesla和Quadro、GeForce的区别

时间:2009-02-26   来源:   网友评论:0   人气: 6659 作者:

近年来,关于使用GPU协同CPU进行大规模高性能并行计算的做法引起了业界的广泛关注。特别是从去年以来,NVIDIA公司在全球推出了基于“CPU+GPU”混合架构的Tesla高性能计算系统,并推出了基于CUDA架构的软件编程环境。那么,Tesla和NVIDIA公司传统的Quadro、GeForce显卡有什么区别呢?Tesla在高性能计算领域的性能表现和应用前景如何呢?

  近日,NVIDIA公司Tesla计算事业部总经理 Andy Keane对上述问题做了深入浅出的阐释。

  Tesla和Quadro、GeForce的区别

  记者:对于高性能计算和图形处理应用,面对Tesla个人高性能计算机和普通显卡,我们应该如何选择不同的配置?

  Andy:Tesla个人超级计算机一般需要搭配一颗四核处理器,每个CPU核心匹配一颗GPU。根据计算问题的具体情况,主内存容量可从4到16 GB之间选择。为CPU配备较大内存的系统被用于处理更大的数据集,例如地震应用程序中所使用的数据集。分子动力学等其它类型的应用程序则不需要巨大容量的内存,因此4GB足够了。图形处理方面就视应用程序而定了。对于大多数计算应用程序来说,NVIDIA板载GPU这样的简单GPU或一块Quadro NVS显卡就足够了。如果应用程序集计算与可视化于一身,那么这样的应用程序一般需要较高的显卡性能,可选用从Quadro NVS到高端的Quadro FX 5800产品。

  记者:从硬件层面看,Tesla配备的显存容量比GeForce更大。但Quadro也有一些4GB显存的版本。NVIDIA如何说服消费者购买Tesla产品而不去选择价格更便宜的Quadro或GeForce呢?

  Andy:这里其实有两个问题。

  确实有4GB显存的Quadro显卡,但是其价格远高于Tesla。Quadro支持高速OpenGL渲染,速度远高于GeForce,因此这项技术的价格自然高于Tesla。Tesla不支持OpenGL。

  GeForce是计算用户的另一种选择。Tesla专为企业部署而设计,拥有更高级别的专业显存,专为处理计算类应用程序而设计。此外,Tesla产品由NVIDIA设计、制造和提供质保。Tesla市场供应周期更长,并提供3年质保。对于这些需要更加可靠的企业级产品的公司,Tesla是最适合的产品。Telsa还有专为数据中心设计的1U系统产品。

  记者:在后续产品及芯片技术规格上,Tesla是沿用同期的GeForce和Quadro产品,还是采用只为计算用途而重新设计的芯片和架构?

  Andy:当前的策略是在Tesla产品线中采用具备特殊特性的标准GPU。现在,GeForce、Quadro以及Tesla中的计算特性是相同的,但是在将来的产品中,Tesla将拥有专为高性能计算而设计的其它特性。这些产品线中的性能级别也会有所变化。

  通过在专业级图形产品中使用与消费级相同的GPU,Tesla在容量较小的高性能计算市场上获得了规模经济效益。这就是所有定制高性能计算处理器与系统专业供应商被市场淘汰的主要原因,未来唯一可行的技术是基于大众市场的技术,例如GPU。

  GPU与CPU计算的不同

  记者:Tesla基于NVIDIA CUDA,该技术最显著的特点就是能够利用GPU的并行计算能力,在大规模、高带宽计算中有着极大的优势。 但是,面对串行计算密集型任务,Tesla是否有解决办法呢?

  Andy:GPU及其内部的CUDA架构是专为并行计算而设计的。

  串行计算是一种有很大区别的架构,这种架构的设计目的是为了解决不同的问题。CPU执行指令的方式就是一个接着另一个地执行。CPU中有许多能够加速串行计算的技术。高速缓存、无次序执行、超标量技术、分支预测……均为抽取指令的技术或一系列指令的串行级并行机制。CPU对片上高速缓存的设计与容量的依赖也非常大。如果程序大小与CPU高速缓存容量不匹配,那么该程序在CPU上的运行速度将会很慢。

  GPU内部的并行计算架构围绕两个基本概念而设计。首先,程序中的数据可分成许多个部分,而为数众多的核群可以并行地处理这些数据。第二个架构方面的设想是,数据将不与高速缓存匹配。例如在图形计算或石油天然气数据处理上,数据量可能会达到兆字节甚至是太字节,用高速缓存来容纳如此巨大的数据量几乎是不切实际的。考虑到这两点设想,GPU被设计为能够使用数以千计的线程,所有线程均并行地执行,能够访问巨大容量的本地存储器。在最新的Tesla产品中,每颗GPU均配备4GB存储器,可容纳待执行的数据。同时针对反复使用的数据,还设有较小的片上存储空间,GPU所配备的巨大容量存储器等同于CPU内部的高速缓存,只是容量大了许多倍而已。


 

文章评论