集群计算终结者、全国最低--Tesla个人超级计算机(2)

时间:2008-12-22   来源:   网友评论:0   人气: 10796 作者:

GPU计算应用实例
   下面的一些实例展示了GPU计算的性能,众多运算密集型的应用程序执行速度已经可以通过NVIDIA的GPU产品获得令人瞩目的提升。

医学成像:数字层析 X 射线照相组合
    数字层析X 射线照相组合是一种早期胸部肿瘤X射线透视法,可以使癌症对乳房组织的损害被更早的检测、发现。在这种应用中,美国马萨诸塞州综合医院就使用了NVIDIA的 GPU产品,通过对X射线透视所获取的数据进行高强度计算来重建图像。
    为了更好的显现肿瘤或其它癌变,层析X射线照相使用了视差技术,可以使图像上相邻物体间的距离更远、成像更清晰。电脑的任务就是将病人胸部的X光扫描图像电子式的排列组合起来。通过使用这种技术,可以消除层叠结构对癌变组织图像的模糊作用。
Img250835665.jpg

层析X 射线照相组合作为一种医学成像概念问世于上世纪60年代,但是直到90年代,当数字感光器具有足够的灵敏度之后才得以成为现实。但是,当时的处理器性能还不足以满足这项任务。首次通过层析 X 射线照相获得的数据进行医学成像的尝试中,花费了5个小时才完成对一个病人的扫描,时间太长,无法进入实际应用。使用一个由34台PC的服务器集群也耗费了20分钟才完成处理,结果还不错,但是在医院的放射实验室安置服务器集群是不切实际的。
    现在,在使用NVIDIA的GPU产品进行计算后,马萨诸塞州综合医院在图像重建的过程中获得了100倍的速度提升,使用一台PC只用5分钟就可以完成计算,使医生很快就可以得到成像图片并给出诊断结果。

模拟与设计:生物医学核磁共振成像植入设备
    在医学领域内,为了保证核磁共振成像或是其它一些诊疗成像设备的安全使用,许多生物医学植入设备被广泛使用。在这些植入设备的模拟与设计过程中,需要进行高强度的计算,用传统的电脑集群将耗费相当多的时间。

    著名的美国波士顿科学国际有限公司就是一个设计和制造起搏器和其他一些生物医学植入设备的公司,他们使用了NVIDIA GPU 运算技术加速整个计算过程。通过NVIDIA的 并行 GPU 架构,模拟过程的执行速度提高了25倍。不仅速度方面提高很多,在成本方面也比过去使用CPU集群时大大降低。

地球科学: 石油与天然气勘探
    现在,石油与天然气的勘探正变得越来越困难。大型的油气储藏带经常处于地表下很深的地方以至于难于勘测。例如最近在墨西哥湾发现的油田就处于海床下20000英尺深的地方。为了解释地质数据,就必须对获得与处理大量的地震数据。headwave-small.jpg 
大多数人今天仍然认为GPU是一种用于娱乐消费的技术。但是,休斯敦的Headwave(一个专门从事地质数据分析的公司)正着手开发新一代计算平台,以充分利用图形卡的并行计算潜力了。
    Headwave的解决方案也通过NVIDIA 的GPU技术,并使用CUDA SDK来运行。地球物理学者可以更快速的筛选他们的数据,即便这些数据多达几TB的容量。过去处理这些多达几TB的数据需要数月的计算时间,而使用NVIDIA GPU 计算技术后,计算速度比过去提高了20倍。所以说,没有NVIDIA 的GPU 计算技术,即时演算这些数据是不可能的,石油与天然气公司将成为这项新技术的直接受益者。
 

计算生物学:分子动力学模拟
    在分子动力学模拟领域内,模拟复杂的分子系统需要要耗费大量的时间,并使用复杂的计算机集群。位于Urbana-Champaign的美国伊利诺伊大学的研究人员就使用了NVIDIA的 GPU 产品用于计算生物分子、离子的相互作用,结果是运算速度比过去采用CPU集群提高了100倍。

hpc3Asmall2.jpg 

关于人类疾病的研究是高性能科学计算的主要用途之一
    使用GPU工作站后,实际运算速度达到了705 gigaflops。这样非凡的成绩也使得生物科学研不再被限制在服务器集群平台,有了GPU计算,在个人实验室、桌面平台都可以很轻松的进行这些生物分子的模拟,从而使研究者之间不再争夺有限的计算资源。 

    更进一步,在一些大规模服务器集群中引入GPU之后,一些过去无法实现的梦想现在也可以成为可能。纳米级分子动力学与NVIDIA计算技术的结合是尖端研究与软件开发技术的联姻,用于帮助超级计算机解读活性细胞分子的微小组成。

科学计算:MathWorks MATLAB
    MATLAB是一种非常适合于对科学和数学算法进行快速编码的高级语言,并广泛应用于各种研究领域,例如信号与图像处理、测量、商业建模与分析、计算生物学等。
    使用NVIDIA 的GPU产品来加速MATLAB有两种方法,第一种不需要改变MATLAB的代码,仅通过插入CUDA FFT 或BLAS 函数库就可完成。为了进一步加速MATLAB程序,CUDA 中的MATLAB插件允许编程人员使用优化过的CUDA程序来替换某些关键函数,这些新的CUDA函数可以被MATLAB程序所调用。由于使用了CUDA函数,MATLAB的使用者可以方便的加速计算而不必重写整个应用程序。

神经电路模拟
0408_Hoff4_305small2.jpg 
 
    大脑神经电路的模拟需要大规模的进行大规模的生物电路模拟,其中也涉及到大量的并行计算。模拟一个神经细胞需要在一秒钟内求解2亿个方程式。一个神经系统矩阵则有成千上万个神经细胞构成,对一格神经系统的即时模拟则需要超过10teraflops的计算能力。Evolved Machines公司在2006年与NVIDIA 合作,将神经系统的模拟速度比当今的x86 微处理器提高了130倍。

随着Nvidia Tesla目前应用普及,凭借其强大性能,更多单位加入,东京工业大学1周时间的准备,用了680Tesla卡就拿到了高性能计算排名Top500的第29名,全球高性能计算机顶级制造商Cray公司改变传统采用Tesla,以前医学成像更高应用受制于计算机性能和成本,现在用Tesla就能做到实时心脏跳动虚拟仿真,多么不可思议,赶紧加入Tesla的应用开发队伍里吧,更多的奇迹等着你创造出来呢,这不是忽悠,这是实实在在发生在我们周围的事情。赶紧参与吧。

更多Tesla个人超级计算机配置,请点击:http://www.xasun.com/article/08/703.html

欲购上述产品,请联系北京太阳HPC应用中心

电话:010-62680056,13391900608   点击这里给我发消息


 

文章评论